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Abstract

Tuberculosis (TB) is an infectious disease that remains an important public health problem at the global level. It is
one of the main causes of morbidity and mortality, due to the emergence of antibiotic resistant Mycobacterium
strains and HIV co-infection. Over the past decade, important progress has been made for better control of the
disease. While microscopy and culture continue to be indispensible for laboratory diagnosis of tuberculosis, the
range of several molecular diagnostic tests, including the nucleic acid amplification test (NAAT) and whole-genome
sequencing (WGS), have expanded tremendously. They are becoming more accessible not only for detection and
identification of Mycobacterium tuberculosis complex in clinical specimens, but now extend to diagnosing multi-
drug resistant strains. Molecular diagnostic tests provide timely results useful for high-quality patient care, low
contamination risk, and ease of performance and speed. This review focuses on the current diagnostic tests in use,
including emerging technologies used for detection of tuberculosis in clinical specimens. The sensitivity and
specificity of these tests have also been taken into consideration.

Keywords: Diagnosis, Drug resistance, M. Tuberculosis, Nucleic acid amplification tests, Sensitivity, Specificity,
Whole-genome sequencing

Background
Tuberculosis (TB), caused by Mycobacterium tuberculosis,
is an infectious disease that poses a major global public
health problem for both developing and developed coun-
tries. The World Health Organization (WHO) estimates
that in 2015, 1.8 million people died from TB (including
0.4 million who were HIV-positive) [1]. In the same year,
more than 95% of TB deaths occurred in low- and
middle-income countries, and 170,000 children died of
TB (excluding children with HIV) [1].
The usual site of TB infection is the lungs (pulmonary

TB), but other organ systems can be involved (extrapul-
monary TB) in spreading M. tuberculosis, including:
pleural, lymphatic, urogenital, osteoarticular. The fre-
quency of extrapulmonary disease increases with im-
mune deficiency states, such as acquired immune
deficiency syndrome patients (in whom extrapulmonary
disease accounts for 50–60%) [2], or by the dissemin-
ation of M. tuberculosis throughout multiple organ

systems (Miliary TB) [3]. Rapid and early diagnosis of
TB and initiating optimal treatment would not only en-
able a cure of an individual patient but will reduce future
numbers of TB cases [4].
The most widely used TB diagnostic test, microscopic

examination of sputum for acid-fast bacilli (AFB), takes
less than an hour; however, it is costly, lacks sensitivity
and specificity, especially in HIV-infected individuals
and children [5, 6]. Moreover, a positive result by this
test does not discriminate between the Mycobacterium
species [7]. Otherwise, Lowenstein-Jensen culture, gen-
erally used as the gold standard in suspected pulmonary
cases, is more sensitive than smear microscopy, but it is
time consuming (may take 4–8 weeks in solid media
culture), and it requires adapted infrastructures and
well-trained laboratory staff [8], which can delay effect-
ive medical interventions; therefore, the need for new
rapid and accurate diagnostic methods has emerged.
With the rapid evolution of molecular techniques, a
wide variety of nucleic amplification tests (NAATs) such
as polymerase chain reaction (PCR), real-time PCR, and
loop-mediated isothermal amplification (LAMP), are
available for the diagnosis of TB.
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Currently, more than 50 new TB tests are in various stages
of development [9]. Although the laboratory-developed and
commercial NAATs assays have been primarily developed
for the analysis of respiratory specimens, they are often
used in non-respiratory specimens to the diagnosis of
extra-pulmonary TB [10–12], because no commercial
assay is approved for this purpose.
The present review summarizes the existing bibliog-

raphy of molecular diagnostics tests for detection of TB.
This is not an exhaustive review of all commercial NAATs;
rather, the review presents the molecular techniques that
have been used for detection of M. tuberculosis in clinical
specimens. Some of them are already incorporated into
the routine diagnostic, while other promising tests are still
undergoing evaluation. .

Rapid molecular tests incorporated into the routine
diagnostic laboratory
COBAS TaqMan MTB
The qualitative COBAS TaqMan MTB (TaqMan MTB;
Roche Diagnostics, Tokyo, Japan) test has also been in-
troduced to replace the well-established COBAS Ampli-
cor assay [13]. COBAS TaqMan MTB (CTM) test is a
real-time PCR assay that amplifies part of the 16S rRNA
gene with the use of a TaqMan probe for the detection
of MTB complex DNA in clinical specimens. The turn-
around time for analyzing 48 samples simultaneously
using COBAS TaqMan is 2.5 h [14]. The COBAS Taq-
Man MTB assay is approved by the US Food and Drug
Administration (FDA) for use in smear-positive and/or
smear-negative pulmonary disease. The manufacturer’s
instructions limit CTM application to respiratory speci-
mens only [15]. However, many studies have evaluated
the performance of the CTM assay for non-respiratory
specimens [16–19].
The diagnostic accuracy of the CTM was poorer for

the non-respiratory specimens than for the respiratory
specimens. Bloemberg et al. [17] examined 838 respira-
tory specimens and found Cobas TaqMan MTB assay to
have 88.4% sensitivity and 98.8% specificity, compared to
a sensitivity of 63.6% and a specificity of 94.6% for the
305 non-respiratory specimens. While using culture as
the golden standard for all specimens, the sensitivity and
specificity was 82.4% and 97.7% respectively.
Studies have found that the Cobas assay had higher sensi-

tivity in smear-positive specimens than in smear-negative
specimens [20], which might be attributable to the decon-
tamination and concentration steps [21]. The sensitivity of
the assay ranges from 96.9% to 98% in smear-positive sam-
ples and from 34.9% to 79.5% in smear-negative samples,
while the specificity ranges from 78.1% to 100% in
smear-positive samples and from 98.7% to 99% in
smear-negative samples [17–19, 22–24]. However, these re-
sults vary from study to study. Some studies have suggested

that this variance is due to the acid-fast bacilli (AFB) smear
status, variable specimen types and incidence of TB [19, 20].
The results of the Cobas TaqMan MTB assay should be
carefully interpreted alongside the clinical data.

Loop-mediated isothermal amplification
Loop-mediated isothermal amplification (LAMP) (Eiken
Chemical Co. Ltd., Tokyo, Japan) assay is an isothermal
molecular method developed by Notomi et al. [25].
LAMP has been successfully implemented in nucleic
acid research, and in clinical application as a screening
tool [26]. Several LAMP-based assays have been devel-
oped to detect M. tuberculosis infection, targeting gyrB
[27], rrs [28], rimM [29], IS6110 [30], hspX [31], mpb64
[32] and sdaA gene [33].
LAMP is an isothermal nucleic acid amplification

technique, in which amplification is carried out at a con-
stant temperature without the need for a thermal cycler.
This method amplifies very few copies of target DNA
with high specificity, efficiency, and rapidity under iso-
thermal conditions using a set of 4 specially designed
primers and a DNA polymerase with strand displace-
ment activity [25, 34, 35]. LAMP was recommended by
WHO in August 2016 for diagnosing pulmonary TB in
adults as a potential replacement for smear microscopy.
Many studies show that LAMP offers potential advan-

tages over PCR for its simplicity, speed, specificity and
cost-effectiveness. These studies favor its use in simpli-
fied testing systems, which could be appropriate in set-
tings with limited resources [2, 35].
TB-LAMP has higher sensitivity for smear-positive

samples (92.1%–100%) than for smear-negative samples
(52.1%–90.3%) [36–39]. For extrapulmonary samples, a
recent study found that LAMP had a good sensitivity
(95.6%) compared to 3 conventional methods: liquid cul-
ture, solid culture, and smear microscopy (69.6%, 65.2%
and 17.4%, respectively) [40]. It has been observed that
the exposure of reaction tubes to aerosol contamination
was identified as one of the possible causes of
false-positives results [29].
In the policy guide, WHO excluded all data obtained

from extra pulmonary samples, and the validation of
TB-LAMP testing with extra pulmonary samples is still
under investigation [41]. To date, LAMP has not been
fully evaluated in HIV patients and children (no data
have been published for children samples).

Gene Xpert TB assays
Xpert MTB/RIF (Xpert; Cepheid Inc., Sunnyvale, California,
United States of America [USA]) is an automated polymer-
ase chain reaction (PCR) test utilizing the GeneXpert plat-
form [42, 43]. The Xpert MTB/RIF assay detects MTB and
rifampicin resistance within two hours of starting the test,
with minimal hands-on technical time [44]. It has been
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approved by the WHO and the US (FDA) (Table 1) [45–
47]. The test procedure may be used directly on clinical
specimens, either raw sputum samples or sputum pellets,
and samples created after decontaminating and concentrat-
ing the sputum [42]. Several studies reported that Xpert
MTB/RIF is a sensitive method for rapid diagnosis of TB,
compared to conventional techniques [48, 49].
Studies evaluating Xpert performance in pulmonary and

extrapulmonary samples in low and intermediate preva-
lence settings [49, 50], showed a sensitivity ranging from
47.8% to 73% and from 28.2% to 73.2% for smear-negative
pulmonary specimens and smear-negative extrapulmonary
specimens, respectively. The sensitivity of Xpert MTB/RIF
in smear-positive samples was 100% [49, 50]. The Xpert
MTB/RIF assay is less sensitive than liquid cultures for the
detection of MTB in both children and adults [51, 52].
Xpert has generally performed very well as a rapid test for
rifampicin resistance (RIF-R), with a pooled sensitivity and
specificity of 94% and 98%, respectively [44] (Table 2).
However, the ability of the assay to detect the RIF-R in a
sample with mixtures of RIF-susceptible and RIF-sensitive
M. tuberculosis populations is dependent on the type of
mutation present [42].
Several studies have found that Xpert MTB/RIF was

not capable of detecting resistance-conferring mutations
located outside the 81 bp rifampicin resistance deter-
mining region (RRDR) of the rpoB gene [42, 53]. Results
obtained in Swaziland show that the Xpert MTB/RIF
assay did not detect the rpoB I491F mutation in 38/125
(30%) of multidrug-resistant strains, as compared to
DNA sequencing [53]. The high frequency of the I491F
mutation highlights the limits of the assay. Thus, it is
important to detect this mutation and complement com-
mercial assays for the diagnosis of RIF-R M. tuberculosis
in routine conditions, particularly in countries where
this specific mutation is frequent [54].
The second limitation of Xpert MTB/RIF compared to

sequencing methods is that Xpert can not differentiate
silent mutations emerging at various positions in the
RRDR of the rpoB gene [55]. These missed mutations
within the RRDR, together with those outside the RRDR,
may cause misinterpretation of RIF susceptibility, ren-
dering treatment ineffective and may be untraceably cir-
culated through chains of transmission.
Luetkemyer et al. and Parcell et al. [56, 57] showed in

their studies that the performance of Xpert MTB/RIF
did not differ between higher- and low-prevalence areas.
For HIV-associated TB, Xpert MTB/RIF has lower sensi-
tivity [44].
To improve the sensitivity and specificity of the

current assay in detection of TB and RIF-R, respectively,
a new version of the Xpert MTB/RIF assay, called Xpert
Ultra, has been developed. The Xpert MTB/RIF Ultra
was designed by adding two amplification targets

(IS6110 and IS1081), 25 different RRDR mutations cov-
ering almost the entire rpoB RRDR from codons 510 to
533, doubling the size of the DNA delivered to PCR re-
action, and other technical enhancements to reduce the
limits of detection from 112.6 CFU/mL of sputum for
Xpert to 15.6 CFU/mL of sputum for Ultra [58].
In 2015, Alland et al. [59] found that Xpert MTB/RIF

Ultra is much more sensitive than Xpert, and is likely to
be as sensitive as liquid TB culture. The multi-center
study (1520 person with signs or symptoms of pulmon-
ary TB) carried out by the Foundation for Innovative
New Diagnostics (FIND) [60] revealed that compared to
culture the sensitivity of Ultra was 5% higher than that
of Xpert MTB/RIF (87.8% vs 82.9%), but the specificity
was 3.2% lower (94.8% vs 98%). In the same study, the
sensitivity of Ultra was 17% higher than Xpert MTB/RIF
in people with smear-negative, culture positive TB
(61.3% vs 44.5%) and 12% higher in HIV-infected pa-
tients (87.8% vs 75.5%).
The higher sensitivity of Ultra is accompanied by a

loss of specificity, particularly among individuals with a
history of previous TB treatment [61]. Arend and van
Soolingen [62] reported that the excess of false positive
Xpert Ultra results found by Dorman et al. [61] can be
explained by detection of DNA from non-viable M
tuberculosis, a phenomenon previously shown for Xpert
MTB/RIF [63].
In a study of 378 children, Ultra’s sensitivity was 24%

higher than that of MTB/RIF [64]. A recent study per-
formed in South African children (367 children) hospi-
talized with suspected pulmonary TB, has shown that
Ultra detected 75.3% of culture-confirmed cases. The
authors concluded that Ultra should not be used as a
replacement test for culture in children [65].
The rates of detection of RIF susceptibility were com-

parable between Xpert and Ultra [58]. Ultra improved
detection of mutants at codon 533, differentiated silent
mutations at codons 513 and 514, and detected a
hetero-resistant sample that was missed by both pheno-
typic susceptibility testing and Xpert [58]. However,
mutations such as IIe491Phe are not detected by Xpert
Ultra [61].
At the end of March 2017, the WHO recommended the

replacement of Xpert by Xpert MTB/RIF Ultra, based on
its increased sensitivity compared to Xpert, which could
improve the diagnosis of paucibacillary forms of TB dis-
ease such as childhood TB, HIV-associated TB, or extra-
pulmonary TB [66].
Cepheid is also slated to release another major tech-

nology improvement called the GeneXpert Omni for
point-of-care testing for TB and rifampicin resistance,
using the same cartridges as those used in the current
GeneXpert machine. GeneXpert Omni is a portable
single-cartridge testing unit, less expensive than the
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current Genexpert, and has four hours of battery life.
Because of the above-mentioned characteristics, it is very
useful, particularly in remote settings where very limited
infrastructure is available for rapid diagnosis of TB. The
projected release of the Omni in emerging markets is at
the end of 2018, and it has yet to be launched or evalu-
ated by the WHO [67].
Cepheid Inc. is also currently developing another cart-

ridge, the Xpert XDR, which will provide resistance to iso-
niazid, fluoroquinolones and aminoglycosides [68]. Xpert
XDR may be highly useful for extensively drug-resistant
tuberculosis (XDR-TB) triaging in high DR-TB settings,
considering the new fluoroquinolone-based short regi-
mens [69, 70].

GenoType Line-Probe Assays
Molecular detection of M. tuberculosis by line probe as-
says (LPA) was introduced in 1995. The assay also allows
for rapid detection of drug resistance [71]. LPA, known
as solid-phase hybridization assays, involves a series of
steps including: extraction of DNA from cultures or dir-
ectly from clinical samples, PCR amplification of nucleic
acid sequences, denaturation, hybridization of the bio-
tinylated PCR amplicons with oligonucleotide probes
immobilized on a strip and colorimetric development
that allows for lines to be seen where the probes are lo-
cated [72]. Some of these LPA tests are INNO-LiPA
Mycobacteria (Innogenetics, Belgium) for the distinction
of the M. tuberculosis (sub) species and the most fre-
quently encountered nontuberculous mycobacteria, and
Genotype MTBDRplus and GenoType MTBDRsl (Hain

LifeScience GmbH, Nehren, Germany) for rapid detec-
tion of MTB and its associated drug resistance, as dis-
cussed above.
The Genotype M. tuberculosis drug resistant (MTBDR)

plus (Version 2.0) is a qualitative in vitro test for detection
of the M. tuberculosis complex and simultaneous detec-
tion of mutation in the rpoB and katG genes for rifampi-
cin (RIF) and isoniazid (INH) resistance, respectively, and
its use is approved by WHO [73]. This test can be used on
bacterial cultures or smear-positive clinical specimens and
takes approximately 5.5 h to perform [74]. Many studies
confirm that the diagnostic performance of Genotype
MTBDRplus (Version 2.0) LPA for detection of
multidrug-resistant tuberculosis (MDR-TB) in direct
smear-positive sputum sample was highly sensitive and
specific [75–77]. However, the sensitivity of the assay
should be improved for detection of MDR-TB in direct
smear-negative sputum specimens [77].
In a study conducted on 242 multidrug-resistant and

30 pansusceptible M. tuberculosis isolates, the perfor-
mances of the LPA and DNA sequencing in detecting
RIF and INH resistance-associated mutations were com-
pared to that of a conventional agar proportion DST.
The results show that the sensitivity for detection of
MDR-TB was 78.5% with the GenoType MTBDRplus
test and 91.3% by resistance gene sequencing [78]. The
specificity for RIF resistance, INH resistance, and
MDR-TB detection was 100% by both methods. How-
ever, DNA sequencing demonstrated superior perform-
ance in detecting INH resistance. The study suggested
that additional alleles associated with INH resistance

Table 2 Sensitivity and specificity of endorsed molecular assays for rapid detection of drug-resistant TB

Assay Detection of drug
resistance

Sensitivity %
(95% confidence interval)

Specificity %
(95% confidence interval)

References

Xpert MTB/RIF RIF 95 (90–97) 98 (97–99) 44*

Xpert Ultra RIF 92.7 (80.1–98.5) 98 (92.8–99.9) 58*

GenoType MTBDRplus RIF Smear positive sample: 88.2 (72.6–96.7) Smear positive sample: 89.5 (75.2–97.1) 77*

Smear negative and culture positive direct
sample: 100 (29.2–100)

Smear negative and culture positive direct
sample: 63.6 (30.8–89.1)

INH Smear positive sample: 91.7 (77.5–98.3) Smear positive sample: 97.2 (85.5–99.9)

Smear negative and culture positive direct
sample: 60 (14.7–94.7)

Smear negative and culture positive direct
sample: 100 (66.4–100)

MDR-TB (RMP&INH) Smear positive sample: 96.4 (81.7–99.9) Smear positive sample: 100 (88.8–100)

Smear negative and culture positive direct
sample: 100 (15.8–100)

Smear negative and culture positive direct
sample: 100 (47.8–100)

GenoType MTBDRsl FLQ 100 (95.8–100) 98.9 (96.1–99.9) 84*

AMK 93.8 (79.2–99.2) 98.5 (95.5–99.7)

KAN 89.2 (79.1–95.6) 98.5 (95.5–99.7)

CPM 86.2 (68.3–96.1) 95.9 (92.2–98.2)

44*: reference standard was phenotypic culture-based DST
58*: results were compared with phenotypic susceptibility testing and Xpert MTB/RIF
77*: results were compared with the conventional liquid culture based reference standard method, BACTEC MGIT 960 culture and DST
84*: results were compared with phenotypic DST
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should be evaluated to improve the sensitivity of the
GenoType MTBDRplus test.
In terms of diagnosis, a number of studies have demon-

strated that GenoType MTBDRplus (Version 2.0) present
greater sensitivity for detection of MTB complex DNA in
smear-positive samples [79–81]. Barnard et al. [81] dem-
onstrated that GenoType MTBDRplus (Version 2.0) over-
diagnoses the presence of M. tuberculosis complex DNA
in culture-negative samples, which may be explained by
the amplification of DNA released from nonviable bacilli,
by laboratory cross-contamination, or by a transcription
error. Further research evaluating the effect of smear sta-
tus, smear grade and other covariates such as HIV on the
diagnostic accuracy of GenoType MTBDRplus (Version
2.0), for detection of M. tuberculosis complex DNA is
needed.
Another LPA, the GenoType MTBDRsl 2.0 (Hain Life-

Science GmbH, Nehren, Germany) line probe assay was
developed for the detection of M. tuberculosis and sim-
ultaneous detection of resistance-conferring mutations
of fluoroquinolones (FLQ) (gyrA and gyrB genes) and
second-line injectable drugs (SLID) (rrs and eis genes)
[82]. The target region for detection of ethambutol
(EMB) (a first-line anti-tuberculosis drug) resistance
(embB codon 306), present in MTBDRsl v1, has been re-
moved from v2.0. WHO recommended the use of the
GenoType MTBDRsl 2.0 assay as an initial test, instead
of phenotypic culture-based drug susceptibility testing
(DST), to detect FLQ and SLID resistance in confirmed
RIF-R and MDR patients [83].
Gardee and colleagues [84] reported that GenoType

MTBDRsl 2.0 has shown an improvement in sensitivity
and specificity for the determination of molecular resist-
ance to both FLQ (100% and 98.9%) and SLID (89.2%
and 98.5%) (Table 2). The same study confirmed the
presence of gyrA mutations missed by the assay, which
were detected by whole-genome sequencing (WGS).
It has been reported by several authors [85, 86] that

MTBDRsl v1 showed poor accuracy for detecting resist-
ance to EMB (55% and 71%) compared to FLQ and
SLID. Only mutations covered by wild-type or mutant
probes can be detected. Other mutations are required to
be targeted by the assay to increase sensitivity and
specificity.

Later-stage or marketed tuberculosis diagnostic test
candidates
Several new diagnostics are emerging from the develop-
ment pipelines, and currently more than 50 new TB tests
are in various stages of development [9]. The majority of
the tools in the pipeline are still in early stages of develop-
ment and/or evaluation. A few new technologies are avail-
able on the market where the data are unavailable or
limited [87]. Among the assays marketed without any/or a

few data published are EasyNAT TB (Ustar Biotechnolo-
gies, Hangzhou, China), FluoroType MTB (Hain Life-
sciences GmbH, Nehren, Germany) and PURE-LAMP
(Eiken Chemical Company, Japan) (Table 3).

Pure-LAMP
The PURE (Procedure for Ultra Rapid Extraction)-LAMP
(Eiken Chemical, Tokyo, Japan) is a manual TB detection
tool based on loop-mediated isothermal amplification
(LAMP) using a nucleic acid amplification method, devel-
oped from 2007 to 2010, by Chemical Company and
FIND. LAMP with the PURE test can be performed
quickly (within 90 min) and includes three steps, sample
preparation, amplification with LAMP and visual detec-
tion of fluorescence light from the reaction tube using UV
light [36, 88].
Several studies showed that PURE-LAMP has very

high sensitivity and specificity, which makes it economic,
cost effective and rapid method for the diagnosis of tu-
berculosis [8, 89]. Mitarai et al. [88] reported the sensi-
tivity of PURE-LAMP in smear-negative TB patients to
be 55.6%, and 98.2% among smear positive TB patients.
Ou et al. [36] reported that the sensitivity of the
PURE-LAMP in smear-negative TB patients and
culture-positive TB patients was 53.81%, the overall
sensitivity was 70.67% and the specificity of PURE-LAMP
was 98.32%. Kouzaki et al. [90] showed that PURE-LAMP
may potentially be a valuable tool for the diagnosis of
extrapulmonary TB. N’guessan et al. [8] compared the
performances of sputum smear microscopy (SSM) after
Ziehl-Neelsen staining and PURE TB-LAMP assay. The
results of this study show that the sensitivity of TB-LAMP
assay is higher than SSM. However, SSM specificity was
higher than molecular method. Thus, PURE-LAMP is rec-
ommended along with other diagnostic methods to verify
the diagnosis of TB, particularly in false-negative samples
[90]. The assay is now on path for WHO review.

FluoroType MTB
FluoroType MTB (Hain Lifescience, Nehren, Germany)
assay is a rapid molecular diagnostic test using real-time
PCR to detect M. tuberculosis complex from respiratory
and non-respiratory clinical specimens. The FluoroType
MTB test is based on the HyBeacon fluorescence technol-
ogy [91]. The amplification is performed on the FluoroCy-
cler instrument (Hain Lifescience) while the detection is
performed by melt curve analysis (MCA) with single
stranded oligonucleotides labeled with fluorescent dyes that
are complementary to the amplified DNA. The method
gives results for multiple specimens within 3–4 h [92].
The first evaluation study of the new FluoroType MTB

assay performed for the direct detection of M. tuberculosis
in clinical respiratory tract specimens demonstrated that
sensitivity and specificity were 95.1% and 96.4%, respectively,
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in 661 specimens tested, and that sensitivity was 100% for
smear-positive and 84.6% for smear negative specimens, re-
spectively [93]. Hofmann-Thiel and Hoffmann [92], found
that FluoroType MTB assay had a sensitivity of 88.1%
(smear-positive 100%; smear-negative 56.3%) and a specifi-
city of 98.9%, in comparison with culture. The authors con-
cluded that the test results were similar to non-nucleic acid
amplification tests on the market, and that the Fluorocycler
system is suitable for low numbers of samples.
Recently, the system has been evaluated in resource-poor

settings [94]. The diagnostic accuracy of the FluoroType
MTB assay was calculated using solid culture as the refer-
ence standard and described by light-emitting diode fluor-
escence smear positivity, HIV status and Xpert MTB/RIF.
The authors found that FluoroType MTB has a sensitivity
equivalent to other molecular tests and identified more
culture-positive samples than Xpert MTB/RIF, but its speci-
ficity was lower than expected, due to DNA contamination
during the sample preparation steps.
The assay is marketed in Europe and launched for

marketing in April 2017, however it is not yet evaluated
by WHO [95].

EasyNAT TB
The EasyNAT TB isothermal nucleic acid amplification
diagnostic kit (Ustar Biotechnologies Co. Ltd., Hangzhou,

China) uses isothermal cross-priming amplification tech-
nology for the qualitative detection of M. tuberculosis [96].
The assay was approved in 2014 for detection of pulmon-
ary TB by the China FDA [97]. To date, EasyNAT TB has
been evaluated only for the detection of pulmonary TB in
adults [98, 99].
Ou et al. and Mhimbira et al. [98, 99] reported sensi-

tivity for MTB detection against culture of 84.1% and
66.7%, and specificity of 97.8% and 100%. Sensitivity in
these studies was further reduced when only smear-negative
but culture-positive pulmonary TB cases were tested
(59.8% and 10%), suggesting further evaluation in lar-
ger study populations from different regions that are
endemic for TB [99].
Bholla et al. [100] evaluated the performance of Easy-

NAT for diagnosis of extrapulmonary TB (tuberculous
lymphadenitis of children), and found that the sensitivity
and specificity was 19% and 100%, respectively. The au-
thors concluded that EasyNAT is not suitable for diag-
nosis of extrapulmonary TB.

Rapid whole-genome sequencing
Early detection of drug resistance is crucial in choosing
the most effective treatment to avert mortality of in-
fected individuals and to prevent the risk of transmission

Table 3 characteristics of molecular assays for rapid detection of MTB and drug-resistance, not yet approved by WHO and/or FDA

Test specification PURE TB-LAMP FluoroType MTB EasyNAT TB Xpert Omni Xpert XDR

Manufacturer Eiken Chemical Co Hain Lifescience Ustar Cepheid Cepheid

Technology Procedure for Ultra
Rapid Extraction Loop-
mediated isothermal
amplification

Real-time PCR
(HyBeacon fluorescence)

Isothermal DNA
amplification
Lateral flow

Real-time PCR
(molecular beacons)

Real-time PCR
(molecular beacons)

Detects MTB MTB MTB MTB + RIF resistance MTB + resistance to
INH, FLQ and SLID

Time to results 90 min [90] 3 h 90 min ∼ 110 min [67] 90 min

Current status The assay is now on
path for WHO review

CE-IVD marked CE-IVD certified
Approved by
China FDA

Platform under development.
Launch expected at the end
of 2018.

Assay under
development.

Benefits − Performed quickly [36].
− No sophisticated
laboratory equipment is
needed [36].
− Requires fewer procedures
and consumables.
− Sensitivity higher than
smear microscopy [36]

− Fluorocycler system is
suitable for low number
of samples or for large
series [92].
− Sensitivity equivalent
to other molecular tests.

− Requires basic
laboratory equipment

− Point of care
− Performed quickly [95].

Assay under
development.

Limitations − Yield false-negative
results [90]
− Possible risks for cross
contamination.
− Does not screen for any
markers of drug resistance.
− Further studies are
required [98].

− Low specificity due to
DNA contamination [94]
− Low sensitivity in
smear-negative [92].
− Does not screen for
any markers of drug
resistance.
- Further studies are
required [92].

− Not suitable for
diagnosis of
extrapulmonary
TB [100].
− Does not screen
for any markers of
drug resistance.

− Processes one sample at
a time [95]
− Cost and accessibility will
limit adoption in high-endemic
areas
− Do not accommodate all
mutations conferring resistance
to anti-TB agents

Assay under
development.

Price per test Not available Not available US$ 6–8 Not available Not available
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of drug-resistant TB [101]. Molecular tests such as quanti-
tative real time amplification (e.g. Xpert MTB/RIF) and
line probe assays (e.g. GenoType MTBDRplus/sl), al-
though more rapid (less than a day), are able to identify
only limited numbers of specific resistance mutations in
drug target genes [102–104]. Both technologies lack cap-
acity to detect mutations outside of the rifampicin
resistance-determining region (RRDR) of the rpoB gene
(e.g. I491F mutation) [53, 105] or to differentiate silent
mutations from those that effect drug efficacy (e.g. the
substitution of CGT for TTG in codon 533 of the rpoB
gene), leading to false positive results [106, 107]. The abil-
ity to detect and identify such mutations among patients
with TB has become necessary, and would be of tremen-
dous value in quickly guiding the initiation of appropriate
therapy. Genome sequencing has the potential to over-
come these problems and can provide clinically relevant
data within a time frame that can influence patient care.
The past decade has seen a considerable expansion of

sequencing capacity improving its availability for routine
laboratories. Whole-genome sequencing (WGS) has been
shown to provide a rapid and comprehensive view of the
genotype of M. tuberculosis, and allows simultaneous
identification of all known resistance-associated loci with
high concordance to culture-based drug susceptibility test-
ing (DST), while also providing opportunities to
characterize other loci as predictive of resistance or not
[108]. Results reported by Shea et al. [109] for 462 pro-
spectively collected M. tuberculosis complex strains, show
that strain identification by WGS was determined to be
99% accurate, and concordance between drug resistance
profiles generated by WGS and culture-based DST
methods was 96% for 8 drugs (RIF, INH, FLQ, PZA, KAN,
EMB, STR, ETH), with an average resistance-predictive
value of 93% and susceptible-predictive value of 96%. Fur-
thermore, WSG can be used in outbreak surveillance to
understand transmission in a population [110].
Despite the perceived benefits of WSG for routine

diagnosis and management of drug-resistant TB, it has
only been implemented in a few high-income countries,
low-TB burden settings such as England [111]. The im-
plementation of WGS in the clinical setting is hindered
by some limitations, including the requirement of bac-
terial enrichment by culturing, prior to DNA isolation
and sequencing, and this generally takes at least a couple
of weeks. Limited studies demonstrated the use of WSG
to generate results within a shorter turnaround time.
Findings from studies performed by Brown et al. [112]
and Nimmo et al. [108] showed that WGS can be suc-
cessfully performed directly from uncultured sputa.
The complexity of WGS data and its analysis also rep-

resents a significant challenge, pointing to the need of
bioinformatics expertise among clinical microbiologists
[111]. A number of groups are now developing software

to help people without bioinformatic skills to process
and analyse large sets of raw data. In this context, Coll
et al. [113] published an exhaustive library with 1325
mutations predictive of DR for 11 anti-tuberculosis
drugs (AMK, CAP, EMB, ETH, INH, KAN, MOX, OFX,
PZA, RMP and STR) and developed an online tool that
rapidly analyses raw sequence data and predicts resist-
ance. However, further work will be required to clarify
the current discrepancies between genotype and pheno-
type [114], as well as the understanding of the genetic
basis of antibiotic resistance, which complicates the in-
terpretation of WGS data [111].

Conclusions
A number of studies have highlighted the role of rapid
molecular diagnostic in diagnosis, management and moni-
toring of TB. Compared with traditional testing methods,
molecular TB diagnostics have been shown to reduce the
turnaround time (the results can be obtained within hours
from receipt of the specimen) with reliable results on
smear-positive specimens, but have lower sensitivities es-
pecially in specimens that are negative by microscopy
(and are generally less effective in children compared with
adults). Furthermore, the additional cost, the need for a la-
boratory infrastructure (i.e. Xpert MTB/RIF), as well as
the need for technicians trained in molecular techniques
are limitations that pose considerable challenges, espe-
cially in low-resource settings. Despite significant ad-
vances in the development of novel tests, molecular tests
cannot replace culture, but should be used in addition to
conventional tests (smear microscopy, culture, and pheno-
typic drug susceptibility testing) and clinical data for TB
diagnosis, as highlighted by other studies [115, 116].
Many questions remain concerning the effectiveness of

NAATs for smear-negative pulmonary and extrapulmon-
ary TB in adults, detection of paucibacillary forms of TB
(e.g. pediatric disease) and previously treated individuals.
Furthermore, no tests are available which are universally
applicable to all patients.
Whole genome sequencing (WGS) has the potential to

revolutionize the diagnosis of M. tuberculosis infection.
However, the utility of WSG is currently limited due to
the major drawbacks of sequencing, such as the costs as-
sociated with the test, the technical skill required, com-
plex bioinformatic procedures and the unavailability of
sequencing facilities. There are currently no plans for
routine implementation of WSG in resource-limited,
high-TB burden countries.
Research work must continue towards developing new

molecular and advanced techniques for rapid and accur-
ate diagnosis of TB, with better performance characteris-
tics, that can be easily implemented for routine TB
diagnosis in low-resource countries.
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