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Multi‑drug resistant gram‑negative bacterial 
pneumonia: etiology, risk factors, and drug 
resistance patterns
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Abstract 

Bacterial pneumonia is one of the most serious public health issues owing to its medical and economic costs, which 
result in increased morbidity and mortality in people of all ages around the world. Furthermore, antimicrobial resist-
ance has risen over time, and the advent of multi-drug resistance in GNB complicates therapy and has a detrimental 
impact on patient outcomes. The current review aimed to summarize bacterial pneumonia with an emphasis on 
gram-negative etiology, pathogenesis, risk factors, resistance mechanisms, treatment updates, and vaccine concerns 
to tackle the problem before it causes a serious consequence. In conclusion, the global prevalence of GNB in CAP was 
reported 49.7% to 83.1%, whereas in VAP patients ranged between 76.13% to 95.3%. The most commonly reported 
MDR-GNB causes of pneumonia were A. baumannii, K. pneumoniae, and P. aeruginosa, with A. baumannii isolated par-
ticularly in VAP patients and the elderly. In most studies, ampicillin, tetracyclines, amoxicillin-clavulanic acid, cepha-
losporins, and carbapenems were shown to be highly resistant. Prior MDR-GNB infection, older age, previous use of 
broad-spectrum antibiotics, high frequency of local antibiotic resistance, prolonged hospital stays, ICU admission, 
mechanical ventilation, and immunosuppression are associated with the MDR-GNB colonization. S. maltophilia was 
reported as a severe cause of HAP/VAP in patients with mechanically ventilated and having hematologic malignancy 
due to its ability of biofilm formation, site adhesion in respiratory devices, and its intrinsic and acquired drug resist-
ance mechanisms. Effective combination therapies targeting PDR strains and drug-resistant genes, antibiofilm agents, 
gene-based vaccinations, and pathogen-specific lymphocytes should be developed in the future.
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Introduction
Pneumonia is an acute inflammation and consolidation 
of lung tissue due to infectiousagents such as bacteria, 
viruses, fungi, and parasites [1]. Bacterial pneumonia 
is an inflammation of one or two lobes of the lung due 
to bacterial infection [2]. Based on how the infection 
is acquired, pneumonia can be classified into commu-
nity-acquired pneumonia (CAP) and hospital-acquired 

pneumonia (HAP) [3]. According to Temesgen and his 
colleague’s report in 2019, CAP is an infection of the 
lung parenchyma that is not acquired from a hospital or 
health care facility [4]. Hospital-acquired pneumonia is 
defined as pneumonia that occurs after 48 h or more of 
hospital admission, and if associated with mechanical 
ventilation, it is termed ventilator-associated pneumo-
nia (VAP) [5]. The global burden of diseases, injuries, 
and risk factors study in 2017 reported that lower res-
piratory tract infections (LRTIs), including bacterial 
pneumonia, cause nearly 2.56 million deaths among 
all age groups, making LRTIs the fifth leading cause of 
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mortality with higher fatalities in Sub-Saharan Africa, 
South Asia, and Southeast Asia [6, 7].

Bacterial pneumonia can spread via aspiration, inha-
lation, or bloodstream spread of pathogenic bacteria 
[8]. Pneumonia is a result of an infection caused by the 
immune system’s inability to clear a pathogen from the 
lower airway and alveoli. This leads to the bronchioles 
and alveoli being filled with inflammatory exudates of 
leukocytes and fluid. This results in decreased carbon 
dioxide and oxygen exchange between the blood and 
the lungs, causing respiratory scarcities and symptoms 
such as cough, sputum production, dyspnea, chest pain, 
and respiratory dysfunction and/or shock in severe 
cases [9, 10]. According to several studies, age, incom-
plete or inadequate vaccination, indoor environmental 
exposure, medical conditions such as asthma, diabetes, 
heart disease, treatment-induced cytopenias in cancer, 
long-term hospitalization, malnutrition, immunosup-
pression, smoking, alcohol consumption, poor dental 
hygiene, contact with contaminated hospital equip-
ment, previous exposure to antibiotics, and the pres-
ence of viral infections that compromise the respiratory 
tract that results in secondary bacterial colonization 
and infection are all important risk factors for disease 
development [11–15].

Studies documented that Streptococcus pneumoniae, 
Staphylococcus aureus, Klebsiella pneumoniae, Haemo-
philus influenzae, Pseudomonas aeruginosa, Moraxella 
catarrhalis, and Escherichia coli were the most fre-
quent causes of typical pneumonia, whereas atypical 
pneumonia is mostly caused by Legionella pneumoph-
ila, Chlamydia pneumoniae, and Mycoplasma pneumo-
niae. Even though S. pneumoniae is the most prevalent 
cause of CAP in all age groups around the world, gram-
negative bacteria (GNB) such as K. pneumoniae, Aci-
netobacter baumannii, P. aeruginosa, and E. coli are 
commonly related to HAP [3, 16, 17]. Antibiotic resist-
ance is increasingly being recognized as a major world-
wide health concern resulting from antibiotic overuse 
and improper administration [18]. Nowadays, pneumo-
nia caused by multidrug-resistant gram-negative bac-
teria (MDR-GNB) is growing more common and has a 
detrimental impact on patient outcomes, indicating a 
shift in infection trends to GNB and their rapid dissem-
ination, particularly in the hospital settings [19–23]. 
To address this, the current review is intended to pro-
vide a summary of the findings on bacterial pneumonia 
focusing on gram-negative etiology, their pathogenesis, 
mechanisms of resistance to antibiotics, risk factors, 
diagnostic challenges and advancements, updates on 
treatment options, and vaccine issues which enables 
concerned bodies to tackle the problem before it causes 
a serious consequence.

Epidemiology and burden
Bacterial pneumonia continues to be one of the most 
serious public health problems due to its medical and 
economic burden. Both CAP and HAP increase morbid-
ity and death in people of all ages around the world [24, 
25]. Community-acquired pneumonia is the sixth leading 
cause of death in people aged 65 and above worldwide. In 
developed countries, the estimated incidence of CAP is 
0.2 to 1.1% in adults, and the mortality is 2 to 14% [26]. A 
population-based study by Bjamason et al. [27] reported 
that CAP requiring hospitalization was 2.7 cases per 1000 
adults annually. The incidence is higher in children under 
the age of four and people over the age of 60, with more 
than 12 cases per 1000 people, but in adults, the rate is 
usually 5.2 to 7.1 cases per 1000 persons per year [28]. 
Childhood mortality and adult hospitalization due to 
pneumonia remain increasing in low and middle-income 
countries. The frequency has increased in the elderly 
because of physiological changes linked to the progres-
sive dysfunction of the respiratory tract and/or weakened 
immunity supported by 72.6% GNB prevalence in elderly 
patients with CAP from China [26, 29].

According to hospital-based studies in Africa, CAP is 
linked to a 6 to 15% increase in adult inpatient hospital 
mortality [30]. Community-acquired pneumonia is the 
most common cause of adult hospitalization and mortal-
ity, accounting for 10% in Kenya [31], 11.9% in Nigeria 
[32], 17% in Ethiopia [33], and 51,000 admissions with 
10,000 deaths in Malawi [34] each year. Epidemiologi-
cal reports from Sub-Saharan Africa also revealed high 
rates of morbidity and mortality from the disease, with 
an estimated 4 million cases and 200,000 deaths per year 
[35, 36]. Pneumonia is one of the leading causes of death 
among Ethiopian children under the age of five, account-
ing for 28% of all deaths [33]. Previous reports in Africa 
showed GNB prevalence in CAP with 49.7% to 56.7% in 
Ethiopia [4, 37, 38], 83.1% in Tanzania [39], and 76.2% in 
Sudan [40].

Hospital-acquired pneumonia is the second most com-
mon nosocomial infection in the world, affecting 0.5 to 
1.7% of hospitalized patients. It is also the leading cause 
of death among all nosocomial infections [41]. The inci-
dence of HAP ranges from 5 to 20 or more cases per 
1000 hospital admission [42]. A study in Ethiopia by 
Tassew et al. [43] in hospitalized patients reported HAP 
as the common type of infection, accounting for 24.7%. 
Ventilator-associated pneumonia is the most common 
nosocomial infection in the intensive care unit (ICU), 
accounting for 25% of all ICU infections [44]. A Ken-
yan study reported VAP prevalence of 54.4% among 92 
patients with clinical pulmonary infection [45]. In a large 
cohort study, both HAP and VAP in ICU patients were 
associated with 82% and a 38% increase in the risk of 
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30-day mortality, respectively [46]. Gram-negative bac-
teria are responsible for most bacterial causes of HAP/
VAP (50–80%) [47]. In the US and Europe, HAP and VAP 
due to GNB among ICU patients were 61.5 and 76.1%, 
respectively [48]. A study conducted on Egyptian chil-
dren revealed that GNB was more prevalent in HAP and 
VAP (91.67 and 87.8%, respectively) [49]. In Iran, GNB 
was obtained in 72.2 and 84.6% of HAP and VAP, respec-
tively [50]. Feng et al. [51] reported a 14.5% mortality rate 
of HAP related to GNB in a retrospective, single-center 
analysis study in China. Moreover, MDR, extensively 
drug-resistant (XDR), and pan-drug resistant (PDR) bac-
teria, especially GNB, are increasingly isolated in HAP 
and VAP and are associated with mortality rates over 
50% [52].

Etiology
Recently, several studies on the bacterial cause of pneu-
monia have been published. Studies reported the study 

period, the number of study participants, age category, 
pneumonia type (CAP, HAP, and VAP), specimen 
sources, as well as studies performed culture and anti-
microbial susceptibility testing have been included and 
summarized (Tables 1 and 2). In studies conducted on 
the etiology of CAP, GNB was found to be present 49.7 
to 83.1% of the time, with common etiologic agents of 
K. pneumoniae, P. aeruginosa, and E. coli [4, 26, 37–40] 
(Table  1). The very high prevalence of GNB in some 
studies is related to variation in the sample size, geo-
graphic location, study period, study population, and 
specimen contamination of respiratory flora. Ventila-
tor-associated pneumonia caused by multidrug-resist-
ant GNB has emerged as a significant and intractable 
clinical problem [58]. Studies in VAP patients reported 
that GNB prevalence between 76.13 to 95.3% with 
highly MDR P. aeruginosa, and A. baumannii strains 
[53–57] (Table 2).

Table 1  Summary of the isolation and drug resistance profile of GNB in CAP

CAP community-acquired pneumonia, HAP hospital-acquired pneumonia, VAP ventilator-associated pneumonia, ESBL extended-spectrum beta-lactamase, 
AMP ampicillin, AMC amoxicillin/clavulanate, TOB tobramycin, TZP piperacillin/tazobactam, CRO ceftriaxone, AK amikacin, CXM cefuroxime, CTX cefotaxime, CIP 
ciprofloxacin, SXT trimethoprim-sulfamethoxazole, CL colistin, CN gentamicin, IMP imipenem, CAZ ceftazidime, TE tetracycline, C chloramphenicol, PEP cefepime, MER 
meropenem, MIN minocycline, APS ampicillin/sulbactam, TLV ticarcillin/clavulanate, LEV levofloxacin, AZT aztreonam, DO doxycycline

Country Study year Participants, age group, 
pneumonia category

Specimen GNB 
(%) in 
culture

Frequently isolated GNB 
(%)

Decreasing order of 
resistance, MDR (%)

References

Tanzania 2015 353, adult, CAP Sputum 83.1% K. pneumoniae (29.9%) and 
P. aeruginosa (11.7%)

K. pneumoniae: 
AMP > AMC > CRO
P. aeruginosa: AMP/SXT/
AMC > CRO > CIP

[39]

China 2016to 2017 176, older (>  60 years), CAP Sputum 72.6% K. pneumoniae (27.4%), E. 
coli (17.9%), andP. aerugi-
nosa (10.3%)

K. pneumoniae: 
AMP > CXM > PIP, 25.0% 
ESBL
E. coli: 
AMP > CXM > CTX > PIP, 
42.9% ESBLP. aeruginosa: 
MIN > SXT > CXM

[26]

Sudan 2017 100, 16 to 60 years, CAP Sputum 76.2% K. pneumoniae (42.8%) and 
P. aeruginosa (30.9%)

K. pneumoniae: CAZ/PEP/
CRO/CTX, 16.7% ESBL
P. aeruginosa: PIP > CL > IMP

[40]

Ethiopia 2018 414, adult, CAP Sputum 49.7% K. pneumoniae (18.0%) and 
P. aeruginosa (11.4%)

K. pneumoniae: AMP/
TE > AMC > SXT > C/DO > 
CN > CIP, 100%
P. aeruginosa: 
CN > CRO > CIP > PIP > CAZ, 
42.1%

[4]

Ethiopia 2020 406, ≥ 5 years, CAP Sputum 56.7% K. pneumoniae (28.0%) and 
P. aeruginosa (14.0%)

K. pneumoniae: 
AMP > TE > SXT/
AMC > C > AK > CAZ > PZP/
CXM > CIP, 97.7%
P. aeruginosa: CAZ > CN > TE/
PEP/AK > CIP, 45.5%

[37]

Ethiopia 2021 312, adult, CAP Sputum 53.2% K. pneumoniae (31.0%) and 
E. coli (20.7%)

K. pneumoniae: 
AMP > AMC > SXT > TE/DO, 
94.9%
E. coli: AMP > TE > DO > 
SXT > AMC, 93.8%

[38]
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Drug resistance patterns of GNB
Drug resistance in GNB varied from place to place 
and studies reported high drug resistance in elderly 
patients and all age groups in VAP. This may be due to 
the increased exposure to antibiotics in the elderly and 
the high frequency of MDR-GNB in the hospital areas 
related to VAP (Tables 1 and 2). In a study of drug resist-
ance analysis on older CAP outpatient reports, ESBL 
producing strains were detected in E. coli (42.9%) and K. 
pneumoniae (25.0%) [26]. A study in Ethiopian adult CAP 
patients showed MDR prevalence of 100% in K. pneu-
moniae, P. vulgaris, and H. influenzae, 90% in E. coli, and 

83.3% in P. mirabilis isolates [4]. Antimicrobial resistance 
in GNB responsible for 45–70% of VAP, is a daily chal-
lenge to ICU physicians [59]. An epidemiological study 
on VAP patients reported 72.1% of MDR-GNB [53].

Why has pneumonia etiology shifted to GNB?
Most of the people in the community, particularly in low-
income countries, purchase cheap and freely available 
antibiotics from local drug stores and use them without a 
physician’s prescription, resulting in the ineffective killing 
of the causative agent, treatment failure, and the survival 
of resistant GNB, which increases the percentage of GNB 

Table 2  Summary of the isolation and drug resistance profile of GNB in HAP/VAP

CAP community-acquired pneumonia, HAP hospital-acquired pneumonia, VAP ventilator-associated pneumonia, ESBL extended-spectrum beta-lactamase, 
AMP ampicillin, AMC amoxicillin/clavulanate, TOB tobramycin, TZP piperacillin/tazobactam, CRO ceftriaxone, AK amikacin, CXM cefuroxime, CTX cefotaxime, CIP 
ciprofloxacin, SXT trimethoprim-sulfamethoxazole, CL colistin, CN gentamicin, IMP imipenem, CAZ ceftazidime, TE tetracycline, C chloramphenicol, PEP cefepime, MER 
meropenem, MIN minocycline, APS ampicillin/sulbactam, TLV ticarcillin/clavulanate, LEV levofloxacin, AZT aztreonam, DO doxycycline

Country Study year Participants, 
age group, 
pneumonia 
category

Specimen GNB (%) in 
culture

Frequently 
isolated GNB 
(%)

Decreasing order of 
resistance, MDR (%)

References

India 2012 to 2014 87, all age, VAP Tracheal aspi-
rates

88.3% P. aeruginosa 
(38.3%), A. bau-
mannii (15.6%), 
and K. pneumo-
niae (14.3%)

P. aeruginosa: PEP > CAZ > CN, 
73.1%
A. baumannii: CXT > CTX > PEP, 
83.3%
K. pneumoniae: 
CXT > CTX > PEP, 72.2%

[53]

Egypt 2014 to 2015 153, all age, VAP Tracheal aspi-
rates

87.1% K. pneumoniae 
(36.9%), E. coli 
(21.04%), A. bau-
mannii (14.95%), 
and P. aeruginosa 
(14.16%)

K. pneumoniae: 
CRO > PEP > AZT > CIP/
TE > SXT > TZP > CN > AK > IMP, 
100%
E. coli: CTR > AZT/PEP > TE > C
IP > SXT > CN > TZP > AK > IM
P, 98%
A. baumannii: CAZ/
CTR/PEP/IMP/LEV/MER/
PIP > AK > SXT > CN, 100%
P. aeruginosa: CAR/
CRO > CAZ > SXT/PIP/CIP/
CN > AK/C > IMP/TZP, 84.84%

[54]

Bangladesh 2015 to 2016 51, all age, VAP Tracheal aspi-
rates

76.13% A. baumannii 
(37.5%), K. pneu-
moniae (22.7%) 
and P. aeruginosa 
(13.6%)

A. baumannii: CRO/CAZ/
CTX > AZT/PEP > AK/CN/COT > 
CIP > IMP > PZP
K. pneumoniae: CRO/CAZ/CTX/
PEP > CPR > SXT > CN > AK
P. aeruginosa: PEP/CTX/
CRO > CN/SXT/IMP > CAZ/CIP

[55]

Vietnam 2017 to 2018 103, 32 to 
94 years old, HAP

Sputum and 
bronchoalveolar 
lavage

95.3% A. baumannii 
(47.5%), K. pneu-
moniae (16.2%) 
and P. aeruginosa 
(12.1%)

A. baumannii: APS/PEP/CTX/
CAZ/CRO/MER/CIP/LEV > 
PZP > TLV > TOB, 100%
K. pneumoniae: AMP > TOB/
PEP/CAZ/SXT > TLV/CRO > AK/
CN, 72.7%
P. aeruginosa: CTX > CRO/TLV/
CN > TOB/PEP/CIP > AK, 92.3%

[56]

Tanzania 2019 to 2020 269, adult, VAP Bronchial 
aspirate

80.1% P. aeruginosa 
(24.7%),K. pneu-
moniae (19.8%), 
and E. coli (12.4%)

P. aeruginosa: CAZ/CXM/AZT/
CIP > CN, 73.9%
K. pneumoniae: 
CRO > AMC > CIP > PIP, 76.4%
E. coli: CN > CRO > CAZ, 70%

[57]
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resistant to drugs [60]. Poor infection control, inadequate 
antimicrobial stewardship, the limited vaccine coverage 
targeting GNB, their high burden in the hospital settings 
as a source of drug-resistant GNB spread to the com-
munity through hospital effluents, the difficult nature 
of acquiring resistance through transmissible genes, 
which act as a vector or reservoir of resistant genes, the 
increased comorbid conditions, the increased elderly 
populations, and the aggressive virulence determinants 
to cause severe disease are all reasons for the coloniza-
tion of GNB [13, 61, 62].

Risk factors for MDR‑GNB
According to the studies report [63–65], MDR-GNB 
causing pneumonia can be acquired from the community 
or hospital setting with risk factors including prolonged 
hospital stay, prior MDR-GNB colonization or infection, 
high frequency of antibiotic resistance in the setting, ICU 
admission, mechanical ventilation, and surgical interven-
tion. They are also common in the elderly population, 
patients with prior antibiotic use, those with underlying 
pulmonary diseases (such as chronic obstructive pul-
monary disease and bronchiectasis), diabetes mellitus, 
immunosuppressive conditions (like HIV and malig-
nancies), prior hospitalization, and chronic alcoholism 
[66–70]. In addition, enteral malnutrition and the use of 
carbapenem drugs are significant risk factors for PDR A. 
baumannii-induced VAP [71].

Pathogenesis: the role of virulence determinants 
in transmission, colonization, adhesion, and invasion
Gram-negative bacterial pneumonia can be acquired 
through the aspiration of bacteria from parts of the upper 
respiratory tract or gastrointestinal tract (GIT), the inha-
lation of aerosols, hematogenous spread from distant 
sites such as the urinary tract, GIT, or lungs infected with 
E. coli and P. aeruginosa into the alveoli [72]. Addition-
ally, bacterial translocation from the GIT has recently 
been known to be a mechanism of acquiring pneumonia 
[73]. Among these routes, aspiration is a common cause 
of HAP and CAP [74]. Approximately 45% of healthy 
adults aspirate oropharyngeal bacteria while sleeping, 
and abnormal swallowing of bacteria may also occur in 
people with depressed consciousness, respiratory tract 
instrumentation, and/or mechanically ventilated patients 
[75].

Bacterial translocation is a pathogenesis mechanism in 
which viable bacterial flora or enteric microorganisms of 
the GIT escape from the intestinal lumen through epithe-
lial mucosa into the mesenteric lymph nodes and then, 
possibly, to the lung. The translocating organisms could 
be the cause of pneumonia, or they could cause changes 
in defense mechanisms that make it difficult for the host 

to clear a bacterial inoculum from the lungs. Patients 
with immunosuppression, cancer, or burns may experi-
ence this [76, 77].

The colonization of GNB substantially increases with 
previous use of antimicrobial agents in patients who have 
alcoholism, diabetes mellitus, pulmonary disease, or use 
of inhalation devices [78]. Adhesins, invasins, secretory 
molecules such as effectors and extracellular matrix, 
outer membrane vesicles, toxins, capsules, fimbriae, fla-
gella, iron acquisition systems consisting of an outer 
membrane receptor, a periplasmic binding protein, and 
an inner membrane ABC transporter, and biofilm for-
mation in GNB contribute to disease occurrence. Some 
of these processes, like adhesins, are found in chromo-
somes, whereas others, such as plasmids, are found in 
mobile genetic components. Siderophores, for example, 
are virulence factors that allow bacteria to adapt and live 
in a host by competing with normal flora for iron [79].

Adherence is aided by adhesions, which are bacterial 
surface structures that promote attachment to epithelial 
cells, pili, cilia, capsules, elastase production, host fac-
tors like surface proteins and polysaccharides, and envi-
ronmental factors like pH and the presence of mucin 
in respiratory secretions. Malnutrition, severe illness, 
endotracheal intubation, and the postoperative state 
can all increase GNB adherence. Prolonged intubation 
causes the biofilm formation on the inner surface of the 
endotracheal tube, which contributes to pathogen per-
sistence and treatment failure [80]. Invasion of GNB into 
the spaces between cells and adjacent alveoli via flagel-
lar movement across the connecting pores causes neu-
trophil recruitment and cytokine release, resulting in 
immune system activation and inflammatory response. 
Due to lipopolysaccharide endotoxin, this inflamma-
tory response is the primary cause of general respiratory 
symptoms such as fever, chills, fatigue, changes in blood 
pressure, and even shock. Neutrophils, bacteria, and fluid 
leaking from nearby blood vessels fill the alveoli, causing 
dyspnea due to impaired oxygen transportation. Severe 
pneumonia causes hypoxia, which leads to hyperventila-
tion and death [81, 82].

Challenges and major advancements in the diagnosis 
of pneumonia
Accurate pneumonia diagnosis is critical for determining 
the disease burden and developing effective treatment 
and prevention strategies. Currently, pneumonia is diag-
nosed based on the patient’s medical history and clinical 
signs and symptoms like cough, fever, purulent sputum, 
auscultation findings, acute pulmonary infiltrate, and 
dyspnea. Chest radiography and computed tomogra-
phy scans are common radiographic imaging techniques 
used in the diagnosis of pneumonia [83]. It is impossible 
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to determine the etiology of pneumonia based solely on 
clinical examination; instead, an optimal specimen must 
be obtained for laboratory identification of bacteria [84]. 
The inability to obtain good quality sputum due to con-
tamination with normal respiratory flora, the good safety 
profile of transthoracic lung aspirates, and the difficulty 
of obtaining sputum in children and the elderly all posed 
challenges [85]. Routine culture, bacterial identification, 
and antimicrobial susceptibility testing need different 
specimens, require specimen treatment, poor detection 
rate, and long turnaround times up to 48–72 h.

Molecular diagnostic tests and/or nucleic acid detec-
tion tests have been used for the diagnosis of bacterial 
pneumonia over recent years. Rapid molecular detection 
of the pathogen can minimize the empirical use of broad-
spectrum antibiotics in severe CAP, HAP, and VAP, but 
their interpretation is difficult due to differences in the 
local treatment guidelines and resistance genes, the dis-
crepancy between genotype and phenotype, the ongoing 
discovery of new resistance mechanisms, and, as a result, 
the potential presence of unknown mechanisms, which 
may lead to false-negative results using molecular tech-
niques [86]. A study by Kitsios et al. [87] about the etio-
logic diagnosis of bacterial pneumonia in mechanically 
ventilated patients reported that enhanced pathogen 
detection using microbial DNA sequencing can improve 
upon culture-based diagnosis, that sequencing profiles 
correlate with the host response, and offers substantial 
opportunity for individualized therapeutic targeting and 
antimicrobial stewardship. The multiplex polymerase 
chain reaction (M-PCR) has become useful for the rapid 
diagnosis of bacterial causes of pneumonia directly from 
the sputum and blood [88]. A recent prospective study 
used M-PCR to detect bacterial pathogens in 95 clinical 
bronchoalveolar lavages or plugged telescoping catheter 
samples from VAP patients and found that the M-PCR 
system had a global sensitivity of 80% and specificity of 
99%. The sensitivity was better for GNB identification 
(90%) [89]. The Bio Fire Film Array Pneumonia Plus Panel 
is an FDA-cleared sample-to-answer assay that enables 
the detection of bacteria and antimicrobial resistance 
marker genes from sputum and bronchoalveolar lavage 
fluid [90]. It has a shorter turn-around-time than culture-
based approaches, is more beneficial to a diverse set of 
patients with severe LRTI, such as severe CAP or VAP, 
who are routinely prescribed broad-spectrum empiri-
cal treatment, and can change antibiotic prescriptions in 
40.7% of patients [91].

Antimicrobial resistance mechanisms in GNB
Resistance to antimicrobial agents is increasing at both 
community and hospital levels, being especially relevant 
in the hospital settings in which changes in the hospital 

environment and strong selective pressure favor the 
selection, persistence, and maintenance of resistant, 
MDR (resistant to at least one agent in three or more 
antimicrobial classes), XDR (resistant to at least one 
agent in all but two or fewer antimicrobial classes), and 
even PDR strains (resistant to all the current groups of 
antibiotics for therapeutic use), causing antibiotic treat-
ment failure, increased mortality, and morbidity, and 
having a significant impact on the cost of medical treat-
ment and prevention of bacterial infections [92]. Anti-
microbial resistance can be innate resistance by genes 
encoding inherent antibiotic resistance present in the 
bacteria, acquired resistance due to selective antibiotic 
pressure from the environment, or adaptative resistance 
that is a reflection of the ecological niche of the bacte-
ria, including environmentally induced genetic changes. 
Mechanisms of antibiotic resistance include target alter-
ation of the drug, the impermeability of the bacteria, 
bypassing the drug, efflux of the drug, biofilm formation, 
and genetically associated changes such as mutations and 
plasmid-mediated transfer of resistance genes [93, 94]. 
Additionally, GNB is resistant to antibiotics with an alter-
ation in the outer membrane such as porin mutations, 
production of enzymes including beta-lactamase, carbap-
enemase, and aminoglycoside modifying enzymes (phos-
phorylating, adenylylating, and acetylating enzymes), and 
increased expression of the transmembrane efflux pump 
[95].

Alexander Fleming first discovered resistance in gram-
negative species to beta-lactam antibiotics in 1929. 
Then now, resistance to beta-lactam drugs in GNB has 
frequently been studied and it is due to the production 
of beta-lactamase enzymes such as the active site ser-
ine beta-lactamases (classes A, C, and D) and the class 
B Metallo-beta-lactamases that use active site zinc ions 
to coordinate a nucleophilic hydroxide to mediate ring-
opening [96]. The enzyme lactamase is formed in the 
periplasmic space, which inactivates the antibiotic after 
penetration into the bacterial organism and breaks the 
amide bond of the four-membered beta-lactam ring, 
deactivating the molecule’s antimicrobially active mol-
ecules through hydrolysis. The highly drug-resistant P. 
aeruginosa, A. baumannii, and K. pneumoniae in HAP 
and VAP patients encodes plasmid-mediated AmpC 
b-lactamases on their chromosomes that hydrolyze 
cephalosporins, monobactams, and cephamycins, as 
well as the expression of class A KPC b-lactamases, 
confer resistance to carbapenems [97]. Moreover, the 
loss of OprD associated with resistance to carbapenems 
such as imipenem and meropenem in P. aeruginosa and 
increased production of drug efflux pump systems (mex), 
as part of either an acquired or intrinsic resistance rep-
ertoire, is capable of exporting various substrates from 
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the periplasm of GNB to the surrounding environment 
before the action of the drug [98].

Biofilm‑mediated resistance
A biofilm is an aggregate of microorganisms that are 
firmly attached to the biotic or abiotic surface, encased 
within an extracellular polymeric substance matrix, and 
that can show new characteristics to gene expression, 
protein synthesis, growth rate, and metabolic activities, 
thereby facilitating the anchorage to any surface irrevers-
ibly. The matrix confers antibiotic resistance through 
processes such as slow penetration of antibiotics, expres-
sion of chromosomally encoded resistant genes or devel-
opment of persistent cells, changes in bacterial growth 
rate and metabolic activities, altered microenvironment 
due to depletion of nutrients and/or accumulation of 
waste substances that will antagonize the action of anti-
biotics, and even counteracting the host immunity [99]. 
In mechanically ventilated patients, biofilms are associ-
ated with endotracheal intubation, which acts as a reser-
voir for drug-resistant pathogens causing VAP such as P. 
aeruginosa and A. baumannii that persist in the hospital 
settings [100].

Update on treatment options and promising future 
perspectives
Antibiotics are the treatment of choice for bacterial pneu-
monia, and the choice of antibiotic depends on the nature 
of pneumonia, the microorganism, and the immune sta-
tus of the individual. In randomized double-blind trials, 
omadacycline, lefamulin, and delafloxacin were non-
inferior to moxifloxacin for treating community-acquired 
bacterial pneumonia in adults [101–103]. The ongoing 
spread of antimicrobial resistance in pneumonia cases 
has made treating MDR-GNB empirically difficult [104]. 
A review by James et al. [23] about the novel antibiotics 
for the treatment of HAP and VAP caused by resistant 
GNB reported that ceftazidime has demonstrated non-
inferiority to meropenem against carbapenem-resistant 
Enterobacteriaceae (CRE) and ceftolozane against MDR 
P. aeruginosa. Recent noninferiority trials reported cefi-
derocol, ceftolozane/tazobactam, ceftazidime/avibactam, 
and imipenem/cilastatin/relebactam combinations as 
potential options in patients with MDR gram-negative 
nosocomial pneumonia, which showed non-inferior 
to high-dose, extended-infusion carbapenems such as 
meropenem in terms of clinical efficacy and all-cause 
mortality [105–108].

Aerosolized antibiotic therapy is already widely admin-
istered in ICUs during mechanical ventilation. A single-
center, double-blind study on adjunctive therapy of ICU 
patients with confirmed MDR-GNB in VAP reported 
that aerosolized amikacin successfully eradicated existing 

MDR bacteria without inducing new resistance to ami-
kacin or change in serum creatinine [109]. Colistin is a 
last resort therapy for infections caused by MDR-GNB, 
in particular P. aeruginosa, A. baumannii, and K. pneu-
moniae [110]. In critically ill patients with nosocomial 
pneumonia caused by MDR-GNB, including carbap-
enem-resistant strains, adjunctive nebulized colistin 
therapy provided non-inferior therapeutic efficacy to 
parenteral colistin therapy with lower clinical failure 
[111, 112].

The therapeutic potential of bacteriophages targeting 
MDR strains of GNB using animal models was evalu-
ated in  vitro and showed high infectivity of phages and 
multiple phage doses were required for effective treat-
ment in  vivo [113]. Novel treatment options such as 
PlyF307 lysine phage against MDR A. baumannii, VTC-
CBPA43 phage against virulent K. pneumoniae, PlyPa91 
and vB_PaeP_PA01EW phages against P. aeruginosa, and 
Abp95 lytic myoviridae phage against multi-genotypes of 
carbapenem-resistant A. baumannii were demonstrated 
in mouse models [114–118]. Tridecaptins, a non-riboso-
mal lipopeptide, showed a selective bactericidal activity 
against the gram-negative version of the peptidoglycan 
precursor lipid II on the outer leaflet of the inner mem-
brane and disrupts the proton-motive force [119].

In a mouse infection model, odilorhabdins also showed 
antimicrobial activity against GNB, including CRE, 
by binding to the small ribosomal subunit at a site not 
exploited by common antibiotics that induce miscoding, 
amino acid misincorporation, and bypass premature stop 
codons that interfere with protein synthesis [120]. Quo-
rum sensing inhibitors can be applied along with other 
antibiotics such as Isobutyl-4, 5-Dihydroxy-2, 3-pentane-
dione (DPD) and phenyl-DPD with gentamicin and small 
molecules to fight biofilm-mediated drug resistance [60]. 
A recent study found that maipomycin A, a novel natural 
compound with promising anti-biofilm activity against 
pathogenic GNB, acts as a synergist to enhance colistin 
efficacy against A. baumannii [121]. In  situations where 
antimicrobial treatment has been unsuccessful or where 
current therapies have caused resistance, iron-chelation 
therapy reduces the growth of MDR-GNB and potenti-
ates antimicrobial strategies, particularly in HAP/VAP 
[122].

GNB vaccine trials are currently underway
Even if vaccines against pneumonia were introduced in 
routine immunization programs, reaching for all people 
in low-income countries is a common challenge to tack-
ling pneumonia. Although there is no licensed vaccine for 
clinical use against GNB, there is a new advance in vac-
cination. The polysaccharide capsules of K. pneumoniae 
have been previously targeted for developing therapeutics 
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and vaccines for treating carbapenem-resistant K. pneu-
moniae infections [123]. A recent trial in a mouse model 
demonstrated the promising efficacy of new vaccine con-
taining YidR recombinant protein to prevent K. pneumo-
niae disease [124]. The preclinical study reported that K. 
pneumoniae bioconjugates are immunogenic and effec-
tive, protecting mice against lethal infection from 2 hvKp 
strains, NTUH K-2044 and ATCC 43816 [125].

Kumar et  al. [126] evaluated the potential of recom-
binant FyuA of K. pneumoniae against lung infection in 
BALB/c mice and found that immunization generated 
both humoral and cell-mediated responses that conferred 
protection against the lethal dose of bacteria. A rand-
omized clinical trial evaluated recombinant IC43 100 μg 
vaccination against potentially lethal P. aeruginosa infec-
tion in mechanically ventilated non-surgical ICU patients 
and found that it was both immunogenic and well-toler-
ated [127]. A live vaccine containing auxotrophic strain 
that lacks the key enzyme involved in D-glutamate bio-
synthesis, a structural component of the bacterial cell 
wall, confers mucosal immunity and protection against 
lethal pneumonia caused by P. aeruginosa [128].

Role of Stenotrophomonas maltophilia in pneumonia: 
an opportunistic GNB
S. maltophilia is an aerobic, non-fermenting, and envi-
ronmental MDR-GNB, emerges in immunocompromised 
individuals and causes severe pneumonia [129]. It causes 
HAP in critically ill patients in the ICU due to its ability of 
biofilm formation and site adhesion in respiratory instru-
ments and its intrinsic and acquired resistance to various 
antibiotics makes treatment difficult [130, 131]. In recent 
studies, the incidence of VAP due to S. maltophilia was 
0.27 to 0.93% [131–133]. It causes severe hemorrhagic 
pneumonia with a reported mortality rate of 100% [134]. 
A study reported high mortality of S. maltophilia pneu-
monia in older cancer patients who used inappropri-
ate antibiotic treatment [135]. Hemorrhagic pneumonia 
caused by S. maltophilia is a significant risk factor for 
mortality in patients with hematologic malignancy such 
as thrombocytopenia and prolonged neutropenia [136]. 
Currently, tigecycline is a promising alternative to tri-
methoprim-sulfamethoxazole and fluoroquinolones for 
treating VAP caused by S. maltophilia, but its resistance 
to available antibiotics has increased [137].

Conclusion and recommendations
Worldwide, the prevalence of GNB among pneumonia 
patients is in the range of 49.7% to 95.3%. The predomi-
nant MDR-GNB in recently published studies causing 
pneumonia were A. baumannii, K. pneumoniae, and P. 
aeruginosa, with A. baumannii isolated particularly in 
VAP patients. The prevalence of MDR-GNB is higher 

in the elderly population, prior MDR-GNB infection, 
prolonged hospital stays, ICU admission, mechanical 
ventilation, surgical intervention, prior antibiotic use, 
comorbidity, chronic alcoholism, and enteral malnutri-
tion. Although the resistance pattern of GNB varies from 
place to place, their resistance to commonly used antibi-
otics is almost similar in all studies across the country. 
In the majority reports of GNB, ampicillin, tetracyclines, 
and amoxicillin-clavulanic acid were highly resistant in 
CAP, whereas cephalosporins and carbapenems were in 
VAP. S. maltophilia became a severe cause of HAP in 
critically ill patients due to its ability of biofilm formation, 
site adhesion in respiratory equipment, and its intrin-
sic and acquired drug resistance mechanism. Micro-
bial DNA sequencing, M-PCR, and the Bio Fire Film 
Array Pneumonia Plus Panel have been recently applied 
to detect bacterial pneumonia. Novel PCR-based tech-
niques should be implemented for the early detection 
of drug-resistant genes to overcome the transmission of 
highly resistant genes between bacteria. Since there are 
increased MDR and PDR gram-negative strains, it makes 
the treatment more complicated, which may lead to high 
morbidity, economic losses, and mortality. To this end, 
newer, effective combination therapies with minimal 
clinical side effects, antibiotics against drug-resistant 
genes, antibiofilm agents, and vaccine approaches involv-
ing genetic vaccines or pathogen-specific lymphocytes, 
particularly for PDR strains, should be developed.
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